如何提升高考數學解題能力(2)
其次,我們要有一套訓練有素的數學復習標準步驟,下面就讓我們循著通往數學滿分的路,看看如何駕馭自己的思想走上數學高分的捷徑。
一、解題思路的理解和來源
平時大家評論一個孩子“聰明”或者“不聰明”的依據是看這個孩子對某件事或很多事得反應以及有沒有他自己的看法。如一個“聰明”的孩子,往往反應快、思路清楚,有自己的主見。那么我們認為“反應快、思路清楚、有主見”是聰明的前提。學習成績好的同學,反應快、思路清楚、有主見就是他們的必備條件。
那么解題也如此,必須反應快、思路清楚、有主見。同一道題,不同的學生從不同的角度去理解,由不同的看法最終匯聚成正確的解題過程,這是解題的必然。無論是推導、還是硬性套用、憑借經驗做題,都是思路的一種。有的同學由開始思路不清漸漸轉變為清楚,有的同學根本沒有思路,這就形成了做題的上的差距。
如果能教會給學生,在處理數學問題上,第一時間最短的思考路徑,并且清晰無比,這樣,每個學生都是“聰明的孩子”,在做題上就能攻無不克戰無不勝。
解題思路的來源就是對題的看法,也就是第一出發點在哪。
二、如何在短期內訓練解題能力
數學解題思想其實只要掌握一種即可,即必要性思維。這是解答數學試題的萬用法門,也是最直接、最快捷的答題思想。什么是必要性思維?必要性思維就是通過所求結論或者某一限定條件尋求前提的思想。幾乎所有數學命題都可以用這一思想進行破解。這里我用視頻來舉兩個簡單的例子,說明數學必要性思維是如何應用的。
縱觀近幾年高考數學試題,可以看出試題加強了對知識點靈活應用的考察。這就對考生的思維能力要求大大加強。如何才能提升思維能力,很多考生便依靠題海戰術,寄希望多做題來應對多變的考題,然而憑借題海戰術的功底仍然難以獲得科學的思維方式,以至收效甚微。最主要的原因就是解題思路隨意造成的,并非所謂“不夠用功”等原因。由于思維能力的原因,考生在解答高考題時形成一定的障礙。主要表現在兩個方面,一是無法找到解題的切入點,二是雖然找到解題的突破口,但做這做著就走不下去了。如何解決這兩大障礙呢?本章將介紹行之有效的方法,使考生獲得有益的啟示。
三.尋找解題途徑的基本方法——從求解(證)入手
遇到有一定難度的考題我們會發現出題者設置了種種障礙。從已知出發,岔路眾多,順推下去越做越復雜,難得到答案,如果從問題入手,尋找要想獲得所求,必須要做什么,找到“需知”后,將“需知”作為新的問題,直到與“已知“所能獲得的“可知”相溝通,將問題解決。事實上,在不等式證明中采用的“分析法”就是這種思維的充分體現,我們將這種思維稱為“逆向思維”——目標前提性思維。
四.完成解題過程的關鍵——數學式子變形
解答高考數學試題遇到的第二障礙就是數學式子變形。一道數學綜合題,要想完成從已知到結論的過程,必須經過大量的數學式子變形,而這些變形僅靠大量的做題過程是無法真正完全掌握的,很多考生都有這樣的經歷,在解一道復雜的考題時,做不下去了,而回過頭來再看一看答案,才恍然大悟,解法這么簡單,后悔莫及,埋怨自己怎么糊涂到沒有把式子再這么變一下呢?
其實數學解題的每一步推理和運算,實質都是轉換(變形).但是,轉換(變形)的目的是更好更快的解題,所以變形的方向必定是化繁為簡,化抽象為具體,化未知為已知,也就是創造條件向有利于解題的方向轉化.還必須注意的是,一切轉換必須是等價的,否則解答將出現錯誤。解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。尋找差異是變形依賴的原則,變形中一些規律性的東西需要總結。在后面的幾章中我們列舉的一些思維定勢,就是在數學思想指導下總結出來的。在解答高考題中時刻都在進行數學變形由復雜到簡單,這也就是轉化,數學式子變形的思維方式:時刻關注所求與已知的差異。
(責任編輯:盧雁明)
分享“如何提升高考數學解題能力”到: