高考數(shù)學(xué)平面的基本性質(zhì)與推論檢測(cè)考試題(附答案)

2017-03-17 19:21:11 來(lái)源:精品學(xué)習(xí)網(wǎng)

   1.2.1 平面的基本性質(zhì)與推論 優(yōu)化訓(xùn)練

  1.下列命題:

  ①公理1可用集合符號(hào)敘述為:若A∈l,B∈l,且A∈α,B∈α,則必有l(wèi)∈α;

  ②四邊形的兩條對(duì)角線必相交于一點(diǎn);

  ③用平行四邊形表示的平面,以平行四邊形的四條邊作為平面邊界線;

  ④梯形是平面圖形.

  其中,正確的命題個(gè)數(shù)為(  )

  A.1            B.2

  C.3 D.4

  解析:選A.①中應(yīng)為l?α;②中空間四邊形對(duì)角線異面;③中平面沒(méi)有界線.

  2.空間中可以確定一個(gè)平面的條件是(  )

  A.兩條直線 B.一點(diǎn)和一直線

  C.一個(gè)三角形 D.三個(gè)點(diǎn)

  答案:C

  3.點(diǎn)M在直線a上,直線a在平面α內(nèi),可記為(  )

  A.M?a?α B.M∈a?α

  C.M∈a∈α D.M?a∈α

  答案:B

  4.空間兩兩相交的三條直線,可以確定的平面的個(gè)數(shù)是________.

  答案:1個(gè)或3個(gè)

  5.假設(shè)一塊木板斜立在地面上,當(dāng)用一根木棒在后面撐住時(shí),能使板面固定,這個(gè)道理是________.

  答案:過(guò)直線和直線外一點(diǎn)有且只有一個(gè)平面

  1.如圖,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,且C?l,則平面ABC與平面β的交線是(  )

  A.直線AC

  B.直線BC

  C.直線AB

  D.直線CD

  解析:選D.由題意知平面ABC與平面β有公共點(diǎn)C,根據(jù)基本性質(zhì)3,這兩平面必定相交,有且只有一條經(jīng)過(guò)點(diǎn)C的交線.由于兩點(diǎn)確定一條直線,所以只要再找到兩平面的另一個(gè)公共點(diǎn)即可.顯然點(diǎn)D在直線AB上,從而它在平面ABC內(nèi);而D在直線l上,所以它又在平面β內(nèi),這樣D也是平面ABC與平面β的公共點(diǎn).因此平面ABC與平面β的交線是直線CD.

  2.如圖所示,AA1是長(zhǎng)方體的一條棱,這個(gè)長(zhǎng)方體中與AA1異面的棱共有(  )

  A.3條

  B.4條

  C.5條

  D.6條

  解析:選B.依據(jù)異面直線的判定定理找與AA1異面的棱.∵AA1在面A1ABB1內(nèi),B1在面A1ABB1內(nèi),C1不在面A1ABB1內(nèi),∴C1B1是與AA1異面的棱.同理,BC,CD,C1D1都是與AA1異面的棱,故正確答案為B.

  3.如圖所示,點(diǎn)P,Q,R,S分別在正方體的四條棱上,并且是所在棱的中點(diǎn),則直線PQ與RS是異面直線的是(  )

  解析:選C.選項(xiàng)A、B中RS與PQ平行;選項(xiàng)D中RS與PQ的延長(zhǎng)線相交,選項(xiàng)C中的PQ與下底面平行,它與下底面中的RS不平行,不相交.

  4.空間三條不重合的直線a、b、c能確定的平面的個(gè)數(shù)是(  )

  A.0,1或2 B.0,2或3

  C.1,2或3 D.0,1,2或3

  解析:選D.若a、b、c兩兩異面,不能確定平面,為0個(gè);若三線共面,為1個(gè);若其中兩條是異面直線,第3條與它們都相交,確定2個(gè)平面;若兩兩平行不共面,或三線交于一點(diǎn)且不共面,則確定3個(gè)平面.

  5.下列四種敘述:

  ①空間四點(diǎn)共面,則其中必有三點(diǎn)共線;

  ②空間四點(diǎn)不共面,則其中任何三點(diǎn)不共線;

  ③空間四點(diǎn)中有三點(diǎn)共線,則此四點(diǎn)必共面;

  ④空間四點(diǎn)中任何三點(diǎn)不共線,則此四點(diǎn)不共面.

  其中正確說(shuō)法的序號(hào)是(  )

  A.②③④ B.②③

  C.①②③ D.①③

  解析:選B.四棱柱中每個(gè)面都有四個(gè)點(diǎn),但這四個(gè)點(diǎn)中沒(méi)有三點(diǎn)是共線的,所以①錯(cuò);對(duì)于④,三點(diǎn)不共線但四點(diǎn)可以共面.

  6.若三個(gè)平面兩兩相交,且三條交線互相平行,則這三個(gè)平面把空間分成(  )

  A.5部分 B.6部分

  C.7部分 D.8部分

  解析:選C.作出這三個(gè)平面的截面,如圖所示,把空間分為7部分,本題考查了學(xué)生的空間想象能力.順利作出截面是解決本題的關(guān)鍵,其中l(wèi)1,l2,l3是截線.

  7.已知點(diǎn)A,直線a,平面α.

  ①A∈a,a∈α?A∈α;②A?a,a?α?A?α;③A∈a,a?α?A?α.

  以上命題正確的個(gè)數(shù)為_(kāi)_______.

  解析:①中“a∈α”符號(hào)不對(duì);②中A可以在α內(nèi),也可以在α外,故不正確;③中“A?α”符號(hào)不對(duì).

  答案:0

  8.空間2條直線,最多確定1個(gè)平面,空間3條直線最多確定3個(gè)平面,空間4條直線最多確定________個(gè)平面……空間n條直線,最多確定________個(gè)平面.

  解析:2條直線最多確定1=2×12個(gè)平面;3條最多確定3=3×22個(gè);4條最多確定4×32=6個(gè);…;猜想n條最多確定n?n-1?2個(gè)平面.

  答案:6 n?n-1?2

  9.如圖是正方體或正四面體,其中P,Q,R,S分別是所在棱的中點(diǎn),則這四個(gè)點(diǎn)共面的圖形是________.

  解析:題圖①,③中的PS∥QR,所以P,Q,R,S共面,而題圖②,④中的PS與QR是異面直線,所以這四個(gè)點(diǎn)不共面.

  答案:①③

  10.用符號(hào)表示下列語(yǔ)句,并畫(huà)出圖形.

  (1)點(diǎn)A在直線l上,點(diǎn)B不在直線l上;

  (2)直線l在平面α內(nèi),直線m與平面α有且只有一個(gè)公共點(diǎn)M;

  (3)平面α與平面β相交于過(guò)點(diǎn)A的直線l.

  解:(1)符號(hào):A∈l,B?l,如圖①所示.

  (2)符號(hào):l?α,m∩α=M,如圖②所示.

  (3)符號(hào):α∩β=l,A∈l,如圖③所示.

  11. 如圖所示,已知直線a與b不共面,直線c∩a=M,直線b∩c=N.又a∩平面α=A,b∩平面α=B,c∩平面α=C,求證A,B,C三點(diǎn)不共線.

  證明:假設(shè)A,B,C三點(diǎn)共線,設(shè)都在直線l上.

  ∵A,B,C∈α,∴l?α,c∩l=C,

  ∴c與l可確定一個(gè)平面β.

  ∵c∩a=M,∴M∈β.又A∈β,

  ∴a?β,同理可證b?β.

  ∴直線a,b共面,

  這與已知a與b不共面矛盾,

  ∴A,B,C三點(diǎn)不共線.

  12.求證:兩兩相交且不過(guò)同一點(diǎn)的三條直線必在同一個(gè)平面內(nèi).

  已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求證:直線AB、BC、AC共面.

  證明:法一:∵AC∩AB=A,

  ∴直線AB、AC確定一個(gè)平面α.

  ∵B∈AB,C∈AC,∴B∈α,C∈α.

  故BC?α.

  因此直線AB、BC、CA都在平面α內(nèi),

  ∴AB、BC、AC共面.

  法二:∵A、B、C三點(diǎn)不在一條直線上,

  ∴過(guò)A、B、C三點(diǎn)可以確定平面α.

  ∵A∈α,B∈α,∴AB?α,

  同理,BC?α,AC?α,

  ∴AB、BC、AC共面.

  (責(zé)任編輯:郭躍文)

分享“高考數(shù)學(xué)平面的基本性質(zhì)與推論檢測(cè)考試題(附答案)”到:

58.4K

網(wǎng)站地圖

關(guān)注高考招生官微
獲取更多招生信息
高校招生微信
亚洲中国久久精品无码,国产大屁股视频免费区,一区二区三区国产亚洲综合,国产AV无码专区毛片
违禁视频在线观看网站 | 亚洲欧洲日韩综合一区在线 | 亚洲精品中文字幕视频网站 | 在线观看国产精品欧美精品 | 亚洲日韩在线中文字幕一区 | 中文字幕日韩一区 |