首頁 課程  書店 學校  題庫 論壇  網校  地方分站: 北京 | 上海 | 鄭州 | 天津
報名咨詢熱線:010-51268840、51268841
 考研網
考試動態 報考指南 考研知識: 資料下載|考研經驗|院校招生|專業碩士|考研輔導 考研教材 考研論壇 考研下載
 數學: 真題|模擬題|學習指導|講義輔導  英語: 真題|模擬題|學習指導|講義輔導  政治: 真題|模擬題|學習指導|講義輔導  專業課試題  網絡課程  在職研
地區信息

線性代數知識點框架(一)

作者:不詳   發布時間:2010-07-16 09:50:26  來源:來源于網絡
  • 文章正文
  • 網校課程
  • 資料下載
  • 育路攻略
  • 論壇

  線性代數的學習切入點:線性方程組。換言之,可以把線性代數看作是在研究線性方程組這一對象的過程中建立起來的學科。

  線性方程組的特點:方程是未知數的一次齊次式,方程組的數目s和未知數的個數n可以相同,也可以不同。

  關于線性方程組的解,有三個問題值得討論:(1)、方程組是否有解,即解的存在性問題;(2)、方程組如何求解,有多少個解;(3)、方程組有不止一個解時,這些不同的解之間有無內在聯系,即解的結構問題。

  高斯消元法,最基礎和最直接的求解線性方程組的方法,其中涉及到三種對方程的同解變換:(1)、把某個方程的k倍加到另外一個方程上去;(2)、交換某兩個方程的位置;(3)、用某個常數k乘以某個方程。我們把這三種變換統稱為線性方程組的初等變換。

  任意的線性方程組都可以通過初等變換化為階梯形方程組。

  由具體例子可看出,化為階梯形方程組后,就可以依次解出每個未知數的值,從而求得方程組的解。

  對方程組的解起決定性作用的是未知數的系數及其相對位置,所以可以把方程組的所有系數及常數項按原來的位置提取出來,形成一張表,通過研究這張表,就可以判斷解的情況。我們把這樣一張由若干個數按某種方式構成的表稱為矩陣。

  可以用矩陣的形式來表示一個線性方程組,這至少在書寫和表達上都更加簡潔。

  系數矩陣和增廣矩陣。

  高斯消元法中對線性方程組的初等變換,就對應的是矩陣的初等行變換。階梯形方程組,對應的是階梯形矩陣。換言之,任意的線性方程組,都可以通過對其增廣矩陣做初等行變換化為階梯形矩陣,求得解。

  階梯形矩陣的特點:左下方的元素全為零,每一行的第一個不為零的元素稱為該行的主元。

  對不同的線性方程組的具體求解結果進行歸納總結(有唯一解、無解、有無窮多解),再經過嚴格證明,可得到關于線性方程組解的判別定理:首先是通過初等變換將方程組化為階梯形,若得到的階梯形方程組中出現0=d這一項,則方程組無解,若未出現0=d一項,則方程組有解;在方程組有解的情況下,若階梯形的非零行數目r等于未知量數目n,方程組有唯一解,若r

  在利用初等變換得到階梯型后,還可進一步得到最簡形,使用最簡形,最簡形的特點是主元上方的元素也全為零,這對于求解未知量的值更加方便,但代價是之前需要經過更多的初等變換。在求解過程中,選擇階梯形還是最簡形,取決于個人習慣。

  常數項全為零的線性方程稱為齊次方程組,齊次方程組必有零解。

  齊次方程組的方程組個數若小于未知量個數,則方程組一定有非零解。

  利用高斯消元法和解的判別定理,以及能夠回答前述的基本問題(1)解的存在性問題和(2)如何求解的問題,這是以線性方程組為出發點建立起來的最基本理論。

  對于n個方程n個未知數的特殊情形,我們發現可以利用系數的某種組合來表示其解,這種按特定規則表示的系數組合稱為一個線性方程組(或矩陣)的行列式。行列式的特點:有n!項,每項的符號由角標排列的逆序數決定,是一個數。

  通過對行列式進行研究,得到了行列式具有的一些性質(如交換某兩行其值反號、有兩行對應成比例其值為零、可按行展開等等),這些性質都有助于我們更方便的計算行列式。

  用系數行列式可以判斷n個方程的n元線性方程組的解的情況,這就是克萊姆法則。

  總而言之,可把行列式看作是為了研究方程數目與未知量數目相等的特殊情形時引出的一部分內容。
 

考研最新熱貼:
【責任編輯:育路編輯  糾錯
[an error occurred while processing this directive]
報考直通車
 
報名時間:2010年10月10日——10月31日網上報名,
11月10日——11月14日現場確認。
報名地點:報名地點由各省、自治區、直轄市招生辦
根據當地實際情況確定,一般在高校設報名點。
考試時間:2010年1月10日、11日初試,3月試復試。
                       MORE>>
[an error occurred while processing this directive]
                       更多>>
[an error occurred while processing this directive]
亚洲中国久久精品无码,国产大屁股视频免费区,一区二区三区国产亚洲综合,国产AV无码专区毛片
亚洲色偷偷偷综合网中文字幕 | 午夜亚洲欧美视频在线观看 | 在线观看1024精品国产 | 亚洲欧美日产综合在线网性色 | 亚洲另类视频免费看 | 日本一区不卡高清更新二区 |