1、本章試題特點
本章的本章是微積分的基礎,特點是基本概念和基本理論較多,許多考題重點考查基本概念和理論,常考題型有
1.求極限;
2.無窮小量及其比較;
3.求間斷點及判斷間斷點類型;
以上三種題型的核心是求極限,所以重點是求極限的方法。
2、重點題型
題型一 極限的概念、性質(zhì)及準則
1、極限的概念重點是理解數(shù)列極限的精確定義,而不是用定義證明極限
2、極限的性質(zhì)重點是:有界性;保號性;有理運算性質(zhì)
3、極限存在的準則:單調(diào)有界準則和夾逼準則
題型二 求函數(shù)極限
于有時以4分小題形式出現(xiàn),題目簡單;有時以大題出現(xiàn),需要使用的方法綜合性強。比如大題可能需要用到等價無窮小代換、泰勒展開式、洛比達法則、分離因子、重要極限等中的幾種方法,有時考生需要選擇其中簡單易行的組合完成題目。另外,分段函數(shù)個別點處的導數(shù),函數(shù)圖形的漸近線,以極限形式定義的函數(shù)的連續(xù)性、可導性的研究等也需要使用極限手段達到目的,須引起注意!
第二:利用中值定理證明等式或不等式,利用函數(shù)單調(diào)性證明不等式。
證明題雖不能說每年一定考,但也基本上十年有九年都會涉及。等式的證明包括使用4個微分中值定理,1個積分中值定理;不等式的證明有時既可使用中值定理,也可使用函數(shù)單調(diào)性。這里泰勒中值定理的使用是一個難點,但考查的概率不大。
第三:一元函數(shù)求導數(shù),多元函數(shù)求偏導數(shù)。
求導數(shù)問題主要考查基本公式及運算能力,當然也包括對函數(shù)關系的處理能力。一元函數(shù)求導可能會以參數(shù)方程求導、變限積分求導或應用問題中涉及求導,甚或高階導數(shù);多元函數(shù)(主要為二元函數(shù))的偏導數(shù)基本上每年都會考查,給出的函數(shù)可能是較為復雜的顯函數(shù),也可能是隱函數(shù)(包括方程組確定的隱函數(shù))。
另外,二元函數(shù)的極值與條件極值與實際問題聯(lián)系極其緊密,是一個考查重點。極值的充分條件、必要條件均涉及二元函數(shù)的偏導數(shù)。
第四:級數(shù)問題。
常數(shù)項級數(shù)(特別是正項級數(shù)、交錯級數(shù))斂散性的判別,條件收斂與絕對收斂的本質(zhì)含義均是考查的重點,但常常以小題形式出現(xiàn)。函數(shù)項級數(shù)(冪級數(shù),對數(shù)一來說還有傅里葉級數(shù),但考查的頻率不高)的收斂半徑、收斂區(qū)間、收斂域、和函數(shù)等及函數(shù)在一點的冪級數(shù)展開在考試中常占有較高的分值。
第五:積分的計算。
積分的計算包括不定積分、定積分、反常積分的計算,以及二重積分的計算,對數(shù)學考生來說常主要是三重積分、曲線積分、曲面積分的計算。這是以考查運算能力與處理問題的技巧能力為主,以對公式的熟悉及空間想像能力的考查為輔的。需要注意在復習中對一些問題的靈活處理,例如定積分幾何意義的使用,重心、形心公式的反用,對稱性的使用等。
第六:微分方程問題。
解常微分方程方法固定,無論是一階線性方程、可分離變量方程、齊次方程還是高階常系數(shù)齊次與非齊次方程,只要記住常用形式,注意運算準確性,在考場上正確運算都沒有問題。但這里需要注意:研究生考試對微分方程的考查常有一種反向方式,即平常給出方程求通解或特解,現(xiàn)在給出通解或特解求方程。這需要考生對方程與其通解、特解之間的關系熟練掌握。
這六大題型可以說是考試的重點考查對象,考生可以根據(jù)自己的實際情況圍繞重點題型復習,爭取達到高分甚至滿分!
特別聲明:①凡本網(wǎng)注明稿件來源為"原創(chuàng)"的,轉(zhuǎn)載必須注明"稿件來源:育路網(wǎng)",違者將依法追究責任;
②部分稿件來源于網(wǎng)絡,如有侵權(quán),請聯(lián)系我們溝通解決。
25人覺得有用