新編高二數(shù)學(xué)知識點大全:數(shù)列公式及結(jié)論總結(jié)
除了課堂上的學(xué)習(xí)外,數(shù)學(xué)知識點也是學(xué)生提高數(shù)學(xué)成績的重要途徑,本文為大家提供了新編高中數(shù)學(xué)知識點大全:數(shù)列公式及結(jié)論總結(jié),希望對大家的學(xué)習(xí)有一定幫助。
一、高中數(shù)列基本公式:
1、一般數(shù)列的通項an與前n項和Sn的關(guān)系:an=
2、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關(guān)于n的一次式;當d=0時,an是一個常數(shù)。
3、等差數(shù)列的前n項和公式:Sn=
Sn=
Sn=
當d≠0時,Sn是關(guān)于n的二次式且常數(shù)項為0;當d=0時(a1≠0),Sn=na1是關(guān)于n的正比例式。
4、等比數(shù)列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an≠0)
5、等比數(shù)列的前n項和公式:當q=1時,Sn=n a1 (是關(guān)于n的正比例式);
當q≠1時,Sn=
Sn=
三、高中數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論
1、等差數(shù)列{an}的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數(shù)列。
2、等差數(shù)列{an}中,若m+n=p+q,則
3、等比數(shù)列{an}中,若m+n=p+q,則
4、等比數(shù)列{an}的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數(shù)列。
5、兩個等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。
6、兩個等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列
{an bn}、 、仍為等比數(shù)列。
7、等差數(shù)列{an}的任意等距離的項構(gòu)成的數(shù)列仍為等差數(shù)列。
8、等比數(shù)列{an}的任意等距離的項構(gòu)成的數(shù)列仍為等比數(shù)列。
9、三個數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d
10、三個數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;
四個數(shù)成等比的錯誤設(shè)法:a/q3,a/q,aq,aq3 (為什么?)
11、{an}為等差數(shù)列,則(c>0)是等比數(shù)列。
12、{bn}(bn>0)是等比數(shù)列,則{logcbn} (c>0且c 1) 是等差數(shù)列。
13. 在等差數(shù)列
中:
(1)若項數(shù) ,則
(2)若數(shù)為 則 ,
14. 在等比數(shù)列
中:
(1) 若項數(shù)為 ,則
(2)若數(shù)為 則 ,
小編為大家整理的新編高中數(shù)學(xué)知識點大全:數(shù)列公式及結(jié)論總結(jié)相關(guān)內(nèi)容大家一定要牢記,以便不斷提高自己的數(shù)學(xué)成績,祝大家學(xué)習(xí)愉快!
(責任編輯:彭海芝)
分享“新編高二數(shù)學(xué)知識點大全:數(shù)列公式及結(jié)論總結(jié)”到:
- 高二數(shù)學(xué) 知識點的總結(jié)。
- 高二數(shù)學(xué)學(xué)習(xí)方法的八大法則。
- 如何學(xué)好高二的數(shù)學(xué)課門呢?
- 高二數(shù)學(xué)學(xué)習(xí)方法的匯總。
- 數(shù)學(xué)從高二墊底到高考138分,她的成績是
- 高二數(shù)學(xué) 復(fù)習(xí)的3種重要方法
- 高二數(shù)學(xué) 學(xué)習(xí)的方法以及技巧
- 高二數(shù)學(xué)學(xué)法:精選高二數(shù)學(xué)輕松高效學(xué)
- 高二數(shù)學(xué)學(xué)法:高二數(shù)學(xué)學(xué)習(xí)問題自我評
- 數(shù)學(xué)高二知識點:簡單隨機抽樣